Real-Time Web-based Dashboard using Firebase for Automated Object Detection Applied on Conveyor

Author:

Afira Fadhillah,Simatupang Joni Welman

Abstract

Conveyors are used by many factories in the industrial sector as tools to move some materials through various processes. Currently, it is necessary to have a device which is connected to a conveyor using a digital system. In this study, a conveyor is designed to use a webcam with a deep learning image classification system, Firebase real-time database, and a web-based dashboard. The webcam is used to capture and classify objects based on shape, color, and status, as well as counting objects that run on the conveyor. Firebase real-time database will receive and store data from the webcam system in real-time so that the data can be displayed on the dashboard. The dashboard used is a website-based design using two web development systems: front-end and back-end. Data displayed on the dashboard uses a real-time data table which is capable of displaying real-time data. Testing is conducted to analyze the performance of the full prototype. Testing methods used are One-by-one Object Test and Sequential Object Test, with total of 20 tests. One-by-one Object test is conducted five times, with a total of 168 data and a total time of 12 minutes and 15 seconds. Meanwhile, Sequential Object test is conducted 15 times, with a total of 546 data and a total time of 7 minutes and 19 seconds. Based on the observations of functional dashboard test, in fact all features and buttons on the dashboard are functioned well.

Publisher

Tecno Scientifica Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maintenance of Web Development Standard for Multiple Devices with Serverless Computing through Cross Browser Affinity Using Hybrid Optimization;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3