The application of Coarse-Grained Parallel Genetic Algorithm with Hadoop in University Intelligent Course-Timetabling System

Author:

Wu Liping

Abstract

The university course-timetabling problem is a NP-C problem. The traditional method of arranging course is inefficient, causes a high conflict rate of teacher resource or classroom resource, and is poor satisfaction in students. So it does not meet the requirements of modern university educational administration management. However, parallel genetic algorithm (PGA) not only have the advantages of the traditional genetic algorithm(GA), but also take full advantage of the computing power of parallel computing. It can improve the quality and speed of solving effectively, and have a broad application prospect in solving the problem of university course-timetabling problem. In this paper, based on the cloud computing platform of Hadoop, an improved method of fusing coarse-grained parallel genetic algorithm (CGPGA) and Map/Reduce programming model is deeply researched, and which is used to solve the problem of university intelligent courses arrangement. The simulation experiment results show that, compared with the traditional genetic algorithm, the coarse-grained parallel genetic algorithm not only improves the efficiency of the course arrangement and the success rate of the course, but also reduces the conflict rate of the course. At the same time, this research makes full use of the high parallelism of Map/Reduce to improve the efficiency of the algorithm, and also solves the problem of university scheduling problem more effectively.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study on Pre-Semester Scheduling Disruption Recovery in Higher Education;2023 4th International Conference on Information Science and Education (ICISE-IE);2023-12-15

2. Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End Users;International Journal of Emerging Technologies in Learning (iJET);2022-06-07

3. Genetic Algorithm for Solving Multi-Objective Optimization in Examination Timetabling Problem;International Journal of Emerging Technologies in Learning (iJET);2021-06-04

4. Setting Up and Implementation of the Parallel Computing Cluster in Higher Education;International Journal of Emerging Technologies in Learning (iJET);2019-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3