Fault Diagnosis in the Field of Additive Manufacturing (3D Printing) Using Bayesian Networks

Author:

Bacha Abdelkabir,Sabry Ahmed Haroun,Benhra Jamal

Abstract

In this work, a new approach for fault diagnosis in the field of additive manufacturing (3d printing) using artificial intelligence will be given. This approach is based on the marriage of the Bayesian Networks theory and data acquisition techniques. Bayesian Networks are well known for their ability to infer probabilities and to give decisional support under uncertainty. In order to do so, these probability engines must be constructed and maintained by a big amount of data and information using learning algorithms. This work provides a methodology that uses sensors based data acquisition and processing to construct such networks. Some of these sensors are already available in most of the 3d printers available in the market, while other sensors were additionally embedded in a studied 3d printer in order to enrich the number of observational variables to gain a high level of fault diagnosis accuracy and support.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3