AutoML-driven diagnostics of the feeder motor in fused filament fabrication machines from direct current signals

Author:

Rooney SeanORCID,Pitz Emil,Pochiraju Kishore

Abstract

AbstractPart defects in additive manufacturing are more frequent compared to machining or molding. Failures can go unnoticed for hours, wasting resources and extending process cycle times. This paper describes a Machine Learning based method for automated sensing of onset failure in additive manufacturing machinery. Investigations are conducted on a Fused Filament Fabrication (FFF) 3D printer, and the same methods are then applied to a digital light processing 3D printer. The investigation focuses on signal-based analysis, specifically passive sensing of stepper motors relating DC current measurements to the torque on a stepper, as opposed to any active acoustic interrogation of the part. Passive methods are used to characterize the loading on a feeder stepper in an FFF machine, forming a model that can identify early signs of filament-based failure with 85.65% 10-fold cross-validation accuracy. Efforts show filament breakage can be detected minutes before material runout would cause a defect, allowing ample time to pause, correct, or control the print. The machine learning pipeline was not naively conceived but optimized through automated machine learning.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3