Survey of Machine Learning Techniques for Student Profile Modeling

Author:

Hamim Touria,Benabbou Faouzia,Sael Nawal

Abstract

Developments in information technology have led to the emergence of several online platforms for educational purposes, such as e-learning platforms, e-recommendation systems, e-recruitment system, etc. These systems exploit advances in Machine Learning to provide services tailored to the needs and profile of students. In this paper, we propose a state of art on student profile modeling using machine learning techniques during last four years. We aim to analyze the most used and most efficient machine learning techniques in both online and face-to-face education context, for different objectives such as failure, dropout, orientation, academic performance, etc. and also analyze the dominant features used for each objective in order to achieve a global view of the student profile model. Decision Tree is the most used and the most efficient by most of research studies. And academic, personal identity and online behavior are the top characteristics used for the student profile. To strengthen the survey results, an experiment was carried out, based on the application of machine learning techniques extracted from the state of art analysis, on the same datasets. Decision tree gave the highest performance, which confirms the survey results.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Education

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3