Classification of Breast Cancer Tumors Using Mammography Images Processing Based on Machine Learning

Author:

Zahedi Farahnaz,Karimi Moridani Mohammad

Abstract

  Abstract— Using intelligent methods to identify and classify a variety of diseases, in particular cancer, has gained tremendous attention today. Tumor classification plays an important role in medical diagnosis. This study's goal was to classify breast cancer (BC) tumors using software-based numerical techniques. To determine whether breast cancer masses are benign or malignant, we used MATLAB version 2020b to build a neural network. In the first step, the features of the training images and their output classes were used to train the network. Optimal weights were obtained after several repetitions, and the network was trained to produce the best result in the test phase after several repetitions. Because of using effective and accurate features, the method suggested here, which was based on an artificial neural network, delivered the diagnostic accuracy, specificity, and sensitivity of 100%, 100%, and 100%, respectively, to discern benign from malignant BC tumors, showing a better performance compared to previously proposed methods. One of the challenges for imaging-based diagnostic techniques in medicine is the difficulty of processing dense tissues. Breast cancer is one of the most common progressive diseases among females. Early diagnosis makes treatment easier and more effective. Using AI-based methods for automated diagnosis purposes can be valuable and have a reduced error rate because accurate diagnosis by manual means is time-consuming and error-prone.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3