Localizing Epileptogenic Zone from High Density EEG Data Using Machine Learning

Author:

Khan Sehresh,Khan Aunsia,Hameed Nazia,Taufiq Muhammad Aleem,Riaz Saba

Abstract

<span>Drug-resistant focal epilepsy is the failure of antiepileptic drugs scheduled to obtain epileptic free brain activities. In human brain, cerebral hemispheres are the most commonly involved brain regions in epilepsy. In case of antiepileptic drugs failure, surgical treatment is the best cure possible. However, correct localization of epileptogenic region is a challenging task for neurologists, while for computer scientists, automatic localization is. This research work’s aim is to explore the functional activities of all brain regions in drug-resistant focal epileptic patients and achieve high accuracy for the classification of epileptogenic region (ER) with the high-density electroencephalographic (hdEEG) data. The proposed system includes frequency analysis for feature extractions followed by individual subject’s registration of hdEEG signals with anatomical brain images for most precise localization of ER possible. The datasets attained from feature extraction process are then preprocessed for class imbalanced and then evaluated using different machine learning algorithms including the techniques under Bayesian networks, Lazy networks, Meta techniques, Rule based systems and Tree structured algorithms. Considering human brain as stationary object as well as dynamic object, frequency-based and time-frequency based features were considered in 12 subjects respectively. Through this novel approach, 99.70% accuracy is achieved to classify ER from healthy regions using KSTAR and using IBK algorithm, 91.60% accuracy has been achieved to classify generator from propagator.</span>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Neural Network Model for Automated Detection of Alzheimer’s Disease using EEG Signals;International Journal of Online and Biomedical Engineering (iJOE);2022-06-28

2. Brain Dynamics in Response to Intermittent Photic Stimulation in Epilepsy;International Journal of Online and Biomedical Engineering (iJOE);2022-04-12

3. Seizure Detection in Epileptic EEG Using Short-Time Fourier Transform and Support Vector Machine;International Journal of Online and Biomedical Engineering (iJOE);2021-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3