Author:
Deshmukh Atharva,Karki Maya,S R Bhuvan,S Gaurav,JP Hitesh
Abstract
Our brain is our body’s control centre and is essential for proper functioning of the body. Alzheimer’s disease is a chronic neurodegenerative disease that affects the cerebral cortex of the brain and causes memory loss and loss of cognitive thinking. EEG (Electroencephalography) is a method of recording neurological electrical activity with electrodes. It was chosen as it is a simple, painless procedure. This paper suggests an automated and accurate algorithm for the detection of Alzheimer's Disease using EEG signals with a combination of Signal processing and Deep Learning Methods. Concepts like Butterworth filters, DWT, statistical parameters, Data Augmentation and CNN were used in order to achieve a classification algorithm with high accuracy. A total highest system accuracy of 97.61% was achieved.
Publisher
International Association of Online Engineering (IAOE)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献