Machine Learning Based Emergency Patient Classification System

Author:

Puttinaovarat SupattraORCID,Pruitikanee Siwipa,Kongcharoen Jinda,Horkaew Paramate

Abstract

<p class="0abstract">Public Health Office and the risk map created from the patient information. Many provincial hospitals currently have to admit a large number of patients to their emergency room. Each year, the number outgrow limited medical resources, causing tremendous operational delay, and thus undermining quality of medical services. In addition, existing ER flows remain lacking means of communicating with patients’ relatives and notifying them with treatment status of patients under their care. To addresses these concerns, registered nurses with experiences are required not only to make initial patient screening and prioritization, but also to serve as liaison between physicians and patients’ relatives. These double tasks impose great burden to already overloaded medical staffs. An emergency patient classification system, based on support vector machine was developed. It was implemented as a web application, written in PHP, and running on MySQL database. GIS technology was employed to analyze spatial data and producing relevant reports. The proposed system could classify emergency patient into different groups based on their severity, according to the government standard. The resultant recommendation, verified by a nurse on duty, as well as treatment status were presented to patients’ relatives on a digital screen. Moreover, the hospital was able to use the summarized reports, in both standard and spatial forms, for its managerial purposes. The develop system could help the hospital to make the most of their limit resources for treating emergency patients. The produced reports were useful for making relevant policies and executive planning.</p>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence in acute care: A systematic review, conceptual synthesis, and research agenda;Technological Forecasting and Social Change;2024-09

2. A Machine Learning Approach for Monitoring and Classifying Healthcare Data-A Case of Emergency Department of KSA Hospitals;International Journal of Environmental Research and Public Health;2023-03-08

3. Intelligent Dust Monitoring Application in Patient Room;International Journal of Online and Biomedical Engineering (iJOE);2021-10-19

4. Toddler ASD Classification Using Machine Learning Techniques;International Journal of Online and Biomedical Engineering (iJOE);2021-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3