A Machine Learning Approach for Monitoring and Classifying Healthcare Data-A Case of Emergency Department of KSA Hospitals

Author:

Ragab Mahmoud12ORCID,Kateb Faris1ORCID,Al-Rabia Mohammed W.34,Hamed Diaa56,Althaqafi Turki7,AL-Ghamdi Abdullah S. AL-Malaise78ORCID

Affiliation:

1. Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Mathematics Department, Faculty of Science, Al-Azhar University, Naser City, Cairo 11884, Egypt

3. Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Health Promotion Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia

5. Mineral Resources and Rocks Department, Faculty of Earth Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

6. Geology Department, Faculty of Science, Al-Azhar University, Naser City, Cairo 11884, Egypt

7. Information Systems Department, HECI School, Dar Alhekma University, Jeddah 22246, Saudi Arabia

8. Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

The Emergency Departments (EDs), in hospitals located in a few important areas in Saudi Arabia, experience a heavy inflow of patients due to viral illnesses, pandemics, and even on a few special occasions events such as Hajj or Umrah, when pilgrims travel from one region to another with severe disease conditions. Apart from the EDs, it is critical to monitor the movements of patients from EDs to other wards inside the hospital or in the region. This is to track the spread of viral illnesses that require more attention. In this scenario, Machine Learning (ML) algorithms can be used to classify the data into many classes and track the target audience. The current research article presents a Machine Learning-based Medical Data Monitoring and Classification Model for the EDs of the KSA hospitals and is named MLMDMC-ED technique. The most important aim of the proposed MLMDMC-ED technique is to monitor and track the patient’s visits to the EDs, the treatment given to them based on the Canadian Emergency Department Triage and Acuity Scale (CTAS), and their Length Of Stay (LOS) in the hospital, based on their treatment requirements. A patient’s clinical history is crucial in terms of making decisions during health emergencies or pandemics. So, the data should be processed so that it can be classified and visualized in different formats using the ML technique. The current research work aims at extracting the textual features from the patients’ data using the metaheuristic Non-Defeatable Genetic Algorithm II (NSGA II). The data, collected from the hospitals, are classified using the Graph Convolutional Network (GCN) model. Grey Wolf Optimizer (GWO) is exploited for fine-tuning the parameters to optimize the performance of the GCN model. The proposed MLMDMC-ED technique was experimentally validated on the healthcare data and the outcomes indicated the improvements of the MLMDMC-ED technique over other models with a maximum accuracy of 91.87%.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3