A Self-organizing Wireless Sensor Networks Based on Quantum Ant Colony Evolutionary Algorithm

Author:

Wang Lin-lin,Wang Chengliang

Abstract

<p><span style="font-size: medium;"><span style="font-family: 宋体;">Aiming at the coverage problem of self-organizing wireless sensor networks, a target coverage method for wireless sensor networks based on Quantum Ant Colony Evolutionary Algorithm (QACEA) is put forward. This method introduces quantum state vector into the coding of ant colony algorithm, and realizes the dynamic adjustment of ant colony through quantum rotation port. The simulation results show that the quantum ant colony evolutionary algorithm proposed in this paper can effectively improve the target coverage of wireless sensor networks, and has obvious advantages compared with the other two methods in detecting the number of targets and the convergence speed. Based on the above findings, it is concluded that the algorithm proposed plays an essential role in the improvement of target coverage and it can be widely used in the similar fields, which has great and significant practical value.</span></span></p>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum algorithms: applications, criteria and metrics;Complex & Intelligent Systems;2023-05-10

2. A review of technological developments in modern farming: Intelligent greenhouse systems;THE 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT, EPIDEMIOLOGY AND INFORMATION SYSTEM (ICENIS) 2021: Topic of Energy, Environment, Epidemiology, and Information System;2023

3. Numerical Simulation and Active Protection of Lightning Discharge Based on Quantum Heuristic Evolutionary Algorithm;International Transactions on Electrical Energy Systems;2022-09-23

4. Quantum Inspired Multiobjective Optimization in Clustered Homogeneous Wireless Sensor Networks for Improving Network Lifetime and Coverage;Lecture Notes in Electrical Engineering;2021

5. Self-Managed System for Distributed Wireless Sensor Networks;Handling Priority Inversion in Time-Constrained Distributed Databases;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3