FIVER – Robust Verification of Countermeasures against Fault Injections

Author:

Richter-Brockmann Jan,Rezaei Shahmirzadi Aein,Sasdrich Pascal,Moradi Amir,Güneysu Tim

Abstract

Fault Injection Analysis is seen as a powerful attack against implementations of cryptographic algorithms. Over the last two decades, researchers proposed a plethora of countermeasures to secure such implementations. However, the design process and implementation are still error-prone, complex, and manual tasks which require long-standing experience in hardware design and physical security. Moreover, the validation of the claimed security is often only done by empirical testing in a very late stage of the design process. To prevent such empirical testing strategies, approaches based on formal verification are applied instead providing the designer early feedback.In this work, we present a fault verification framework to validate the security of countermeasures against fault-injection attacks designed for ICs. The verification framework works on netlist-level, parses the given digital circuit into a model based on Binary Decision Diagrams, and performs symbolic fault injections. This verification approach constitutes a novel strategy to evaluate protected hardware designs against fault injections offering new opportunities as performing full analyses under a given fault models.Eventually, we apply the proposed verification framework to real-world implementations of well-established countermeasures against fault-injection attacks. Here, we consider protected designs of the lightweight ciphers CRAFT and LED-64 as well as AES. Due to several optimization strategies, our tool is able to perform more than 90 million fault injections in a single-round CRAFT design and evaluate the security in under 50 min while the symbolic simulation approach considers all 2128 primary inputs.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compositional Verification of Cryptographic Circuits Against Fault Injection Attacks;Lecture Notes in Computer Science;2024-09-13

2. Another Break in the Wall: Harnessing Fault Injection Attacks to Penetrate Software Fortresses;Proceedings of the First International Workshop on Security and Privacy of Sensing Systems;2023-11-12

3. Enhanced PATRON: Fault Injection and Power-aware FSM Encoding Through Linear Programming;ACM Transactions on Design Automation of Electronic Systems;2023-10-16

4. ExploreFault: Identifying Exploitable Fault Models in Block Ciphers with Reinforcement Learning;2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

5. Invited: Pre-silicon Side Channel and Fault Analysis;2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3