Enhanced PATRON: Fault Injection and Power-aware FSM Encoding Through Linear Programming

Author:

Choudhury Muhtadi1ORCID,Gao Minyan1ORCID,Varna Avinash2ORCID,Peer Elad3ORCID,Forte Domenic1ORCID

Affiliation:

1. University of Florida, USA

2. Intel Corporation, USA

3. Intel Corporation, Israel

Abstract

Since finite state machines (FSMs) regulate the control flow in circuits, a computing system’s security might be breached by attacking the FSM. Physical attacks are especially worrisome because they can bypass software countermeasures. For example, an attacker can gain illegal access to the sensitive states of an FSM through fault injection, leading to privilege escalation and/or information leakage. Laser fault injection (LFI) provides one of the most effective attack vectors by enabling adversaries to precisely overturn single flip-flops states. Although conventional error correction/detection methodologies have been employed to improve FSM resiliency, their substantial overhead makes them unattractive to circuit designers. In our prior work, a novel decision diagram-based FSM encoding scheme called PATRON was proposed to resist LFI according to attack parameters, e.g., number of simultaneous faults. Although PATRON bested traditional encodings keeping overhead minimum, it provided numerous candidates for FSM designs requiring exhaustive and manual effort to select one optimum candidate. In this article, we automatically select an optimum candidate by enhancing PATRON using linear programming (LP). First, we exploit the proportionality between dynamic power dissipation and switching activity in digital CMOS circuits. Thus, our LP objective minimizes the number of FSM bit switches per transition, for comparatively lower switching activity and hence total power consumption. Second, additional LP constraints along with incorporating the original PATRON rules, systematically enforce bidirectionality to at least two state elements per FSM transition. This bestows protection against different types of fault injection, which we capture with a new unidirectional metric. Enhanced PATRON (EP) achieves superior security at lower power consumption in average compared to PATRON, error-coding, and traditional FSM encoding on five popular benchmarks.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3