Pay Attention to Raw Traces: A Deep Learning Architecture for End-to-End Profiling Attacks

Author:

Lu Xiangjun,Zhang Chi,Cao Pei,Gu Dawu,Lu Haining

Abstract

With the renaissance of deep learning, the side-channel community also notices the potential of this technology, which is highly related to the profiling attacks in the side-channel context. Many papers have recently investigated the abilities of deep learning in profiling traces. Some of them also aim at the countermeasures (e.g., masking) simultaneously. Nevertheless, so far, all of these papers work with an (implicit) assumption that the number of time samples in raw traces can be reduced before the profiling, i.e., the position of points of interest (PoIs) can be manually located. This is arguably the most challenging part of a practical black-box analysis targeting an implementation protected by masking. Therefore, we argue that to fully utilize the potential of deep learning and get rid of any manual intervention, the end-to-end profiling directly mapping raw traces to target intermediate values is demanded.In this paper, we propose a neural network architecture that consists of encoders, attention mechanisms and a classifier, to conduct the end-to-end profiling. The networks built by our architecture could directly classify the traces that contain a large number of time samples (i.e., raw traces without manual feature extraction) while whose underlying implementation is protected by masking. We validate our networks on several public datasets, i.e., DPA contest v4 and ASCAD, where over 100,000 time samples are directly used in profiling. To our best knowledge, we are the first that successfully carry out end-to-end profiling attacks. The results on the datasets indicate that our networks could get rid of the tricky manual feature extraction. Moreover, our networks perform even systematically better (w.r.t. the number of traces in attacks) than those trained on the reduced traces. These validations imply our approach is not only a first but also a concrete step towards end-to-end profiling attacks in the side-channel context.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Side-channel attacks based on attention mechanism and multi-scale convolutional neural network;Computers and Electrical Engineering;2024-10

2. A Unified and Fully Automated Framework for Wavelet-Based Attacks on Random Delay;IEEE Transactions on Computers;2024-09

3. Domain‐Adaptive Power Profiling Analysis Strategy for the Metaverse;International Journal of Network Management;2024-07-10

4. Acnn: arbitrary trace attacks based on leakage area detection;International Journal of Information Security;2024-06-26

5. On the Instability of Softmax Attention-Based Deep Learning Models in Side-Channel Analysis;IEEE Transactions on Information Forensics and Security;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3