Windmountainite, □Fe3+2Mg2□2Si8O20(OH)2(H2O)4·4H2O, a new modulated, layered Fe3+-Mg-silicate-hydrate from Wind Mountain, New Mexico: Characterization and origin, with comments on the classification of palygorskite-group minerals

Author:

Leung Derek D.1,McDonald Andrew M.1

Affiliation:

1. Harquail School of Earth Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada

Abstract

ABSTRACTWindmountainite, ideally □Fe3+2Mg2□2Si8O20(OH)2(H2O)4·4H2O, is a new mineral species and member of the palygorskite group discovered as orange-brown, radiating aggregates that commonly fill vesicles (average 1.5 × 2.5 mm) within a phonolite dike at Wind Mountain, Otero County, New Mexico, USA. The mineral develops as tightly bound bundles (up to 0.02 × 6 mm) of acicular to bladed crystals that are elongate on [001] and flattened on the pinacoid {010}. Associated minerals include albite, aegirine, fluorapophyllite-(K), natrolite, neotocite, and montmorillonite, the last of these being observed to replace primary windmountainite. It has a dull luster, silky in aggregates, is translucent and has an orange-brown streak. It does not fluoresce under short-, medium-, or long-wave ultraviolet radiation. Windmountainite is brittle with a splintery fracture and has two good cleavages (predicted) on {110}, an estimated hardness of 2, a calculated density of 2.51 g/cm3, and a calculated navg of 1.593. A total of n = 30 EMPA (WDS) analyses from six grains yielded an average of (wt.%): Na2O 0.08, MgO 3.47, Al2O3 1.15, SiO2 49.76, Cl 0.07, K2O 0.40, CaO 0.68, TiO2 0.30, MnO 5.64, Fe2O3 20.17, H2O (calc.) 16.59, O=Cl –0.02, total 98.29. The empirical formula [based on Σ(T1, T2, M2, M3) = 12 cations pfu, excluding Ca, K, and Na] is: (□0.78Ca0.12K0.08Na0.02)Σ1.00(Fe3+1.93Al0.04Ti0.02)Σ1.99 (Mg0.81Mn2+0.75Fe3+0.44)Σ2.00□2(Si7.81Al0.17Ti0.01Fe3+0.01)Σ8.00O20[(OH)1.98Cl0.02]Σ2.00[(H2O)3.38(OH)0.62]Σ4.00·4H2O, yielding the simplified formula, □Fe3+2Mg2□2Si8O20(OH)2(H2O)4·4H2O. The predominance of Fe3+ is based on color, results from the crystal-structure refinement, the crystal-chemistry of palygorskite-group minerals, the association with Fe3+-dominant minerals, and considerations regarding the late-stage geochemical evolution of agpaitic rocks. The presence of H2O and OH was determined based on results from the refined crystal structure and Fourier-transform infrared spectroscopy. Windmountainite crystallizes in the space group C2/m with a 13.759(3), b 17.911(4), c 5.274(1) Å, β 106.44(3)°, V 1246.6(1) Å3, and Z = 2. The seven strongest powder X-ray diffraction lines are [d in Å (I), (hkl)]: 10.592 (100) (110), 5.453 (16) (130), 4.484 (19) (040), 4.173 (28) , 3.319 (53) (221, 400), 2.652 (30) , 2.530 (27) . The crystal structure was determined from single-crystal X-ray diffraction data and refined to R = 4.01% and wR2 = 10.70% using data from 902 reflections (Fo > 4σFo). It is based on sheets of inverted double chains of SiO4 tetrahedra that sandwich ribbons of Mφ6 octahedra (φ = O, OH, H2O, Cl), giving rise to large channels (∼6.5 × 9 Å) that are occupied by loosely held H2O groups. A modified classification of the palygorskite group [general crystal-chemical formula M1M22M32M42T14T24O20(OH)2(H2O,OH)4·W] is proposed based on the occupants of the four M sites. Within this scheme, windmountainite is the □-Fe3+-Mg-□ member. The palygorskite group includes six members: palygorskite (monoclinic and orthorhombic polytypes), yofortierite, tuperssuatsiaite, raite, windhoekite, and windmountainite. Windmountainite is considered to have formed from late-stage fluids that were alkaline, oxidized, and rich in both Fe3+ and H2O; high aH2O conditions are reflective of abundant, hydrated feldspathoids (natrolite and analcime) forming as primary rock-forming minerals in the phonolite at Wind Mountain.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3