TotBlocks: exploring the relationships between modular rock-forming minerals with 3D-printed interlocking brick modules

Author:

Leung Derek D. V.ORCID,dePolo Paige E.

Abstract

Abstract. Many rock-forming chain and sheet silicate minerals, i.e., pyroxenes, amphiboles, micas, and clay minerals, are built from shared chemical building blocks known as T-O-T modules. Each module consists of two opposing chains of vertex-sharing silica tetrahedra (T), which vertically sandwich a ribbon of edge-sharing metal–oxygen octahedra (O) in a T-O-T configuration. These minerals are both abundant and diverse in the lithosphere because T-O-T modules are chemically versatile (incorporating common crustal elements, e.g., O, Si, Al, Fe, and Mg) and structurally versatile (varying as a function of module width and linkage type) over a wide range of chemical and physical conditions. Therefore, these minerals lie at the center of understanding geological processes. However, their diversity leads to the minerals developing complex, 3D crystal structures, which are challenging to communicate. Ball-and-stick models and computer visualization software are the current methods for communicating the crystal structures of minerals, but both methods have limitations in communicating the relationships between these complex crystal structures. Here, we investigate the applications of 3D printing in communicating modular mineralogy and crystal structures. The open-source TotBlocks project consists of 3D-printed, T-O-T interlocking bricks, based on ideal polyhedral representations of T and O modules, which are linked by hexagonal pegs and slots. Using TotBlocks, we explore the relationships between modular minerals within the biopyribole (biotite–pyroxene–amphibole) and palysepiole (palygorskite–sepiolite) series. The bricks can also be deconstructed into T and O layer modules to build other mineral structures such as the brucite, kaolinite–serpentine, and chlorite groups. Then, we use the T-O-T modules within these minerals to visually investigate trends in their properties, e.g., habit, cleavage angles, and symmetry/polytypism. In conclusion, the TotBlocks project provides an accessible, interactive, and versatile way to communicate the crystal structures of common rock-forming minerals.

Publisher

Copernicus GmbH

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3