Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P–associated external guide sequences

Author:

Deng Qiudi,Liu Yujun,Li Xin,Yan Bin,Sun Xu,Tang Wei,Trang Phong,Yang Zhu,Gong Hao,Wang Yu,Lu Jie,Chen Jun,Xia Chuan,Xing Xiwen,Lu Sangwei,Liu Fenyong

Abstract

External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5′ termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%–74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.

Funder

Guangdong Innovative and Entepreneurial Research Team Program

National Mega Project on Major Infectious Disease Prevention

National Mega Project on Major Drug Development

National Natural Science Foundation of China

Antiviral Cooperative Innovation Center of Traditional Chinese Medicine at Shandong Province

Natural Science Foundation of Guangdong Province, China

Project for Construction of Guangzhou Key Laboratory of Virology

National Small Business Innovation and Research (SBIR) Program of China

Technology R&D Program of Jiangsu Province, China

Open Research Fund Program of the State Key Laboratory of Virology of China

Jinan University

National Institutes of Health

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3