Anticodon loop mutations perturb reading frame maintenance by the E site tRNA

Author:

Sanders Christina L.,Lohr Kristin J.,Gambill Holly L.,Curran Ryan B.,Curran James F.

Abstract

The ribosomal E site helps hold the reading frame. Certain tRNA mutations affect translation, and anticodon loop mutations can be especially detrimental. We studied the effects of mutations saturating the anticodon loop of the amber suppressor tRNA, Su7, on the ability to help hold the reading frame when in the E site. We also tested three mutations in the anticodon stem, as well as a mutation in the D stem (the “Hirsh” mutation). We used the Escherichia coli RF2 programmed frameshift site to monitor frame maintenance. Most anticodon loop mutations increase frameshifting, possibly by decreasing codon:anticodon stability. However, it is likely that the A site is more sensitive to anticodon loop structure than is the E site. Unexpectedly, the Hirsh mutation also increases frameshifting from the E site. Other work shows that mutation may increase the ability of tRNA to react in the A site, possibly by facilitating conformational changes required for aminoacyl-tRNA selection. We suggest that this property may decrease its ability to bind to the E site. Finally, the absence of the ms2io6A nucleoside modifications at A37 does not decrease the ability of tRNA to help hold the reading frame from the E site. This was also unexpected because the absence of these modifications affects translational properties of tRNA in A and P sites. The absence of a negative effect in the E site further highlights the differences among the substrate requirements of the ribosomal coding sites.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Reference46 articles.

1. tRNA’s Wobble Decoding of the Genome: 40 Years of Modification

2. P-site tRNA is a crucial initiator of ribosomal frameshifting

3. Björk, G.R. (1995) in tRNA: Structure, biosynthesis and function, Biosynthesis and function of modified nucleosides, eds Söll D. RajBhandary U. (ASM Press, Washington, DC), pp 165–205.

4. UGA Codon Context Which Spans Three Codons

5. Features and Functions of the Ribosomal E Site

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3