Author:
Frenk Stephen,Lister-Shimauchi Evan H.,Ahmed Shawn
Abstract
Telomeric DNA is composed of simple tandem repeat sequences and has a G-rich strand that runs 5′ to 3′ toward the chromosome terminus. Small RNAs with homology to telomeres have been observed in several organisms and could originate from telomeres or from interstitial telomere sequences (ITSs), which are composites of degenerate and perfect telomere repeat sequences found on chromosome arms. We identified Caenorhabditis elegans small RNAs composed of the Caenorhabditis telomere sequence (TTAGGC)n with up to three mismatches, which might interact with telomeres. We rigorously defined ITSs for genomes of C. elegans and for two closely related nematodes, Caenorhabditis briggsae and Caenorhabditis remanei. Most telomeric small RNAs with mismatches originated from ITSs, which were depleted from mRNAs but were enriched in introns whose genes often displayed hallmarks of genomic silencing. C. elegans small RNAs composed of perfect telomere repeats were very rare but their levels increased by several orders of magnitude in C. briggsae and C. remanei. Major small RNA species in C. elegans begin with a 5′ guanine nucleotide, which was strongly depleted from perfect telomeric small RNAs of all three Caenorhabditis species. Perfect G-rich or C-rich telomeric small RNAs commonly began with 5′ UAGGCU and 5′ UUAGGC or 5′ CUAAGC, respectively. In contrast, telomeric small RNAs with mismatches had a mixture of all four 5′ nucleotides. We suggest that perfect telomeric small RNAs have a mechanism of biogenesis that is distinct from known classes of small RNAs and that a dramatic change in their regulation occurred during recent Caenorhabditis evolution.
Funder
National Institutes of Health
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献