Phased nucleotide inserts for sequencing low-diversity RNA samples from in vitro selection experiments

Author:

Bendixsen Devin P.ORCID,M. Roberts Jessica,Townshend BrentORCID,Hayden Eric J.ORCID

Abstract

In vitro selection combined with high-throughput sequencing is a powerful experimental approach with broad application in the engineering and characterization of RNA molecules. Diverse pools of starting sequences used for selection are often flanked by fixed sequences used as primer binding sites. These low diversity regions often lead to data loss from complications with Illumina image processing algorithms. A common method to alleviate this problem is the addition of fragmented bacteriophage PhiX genome, which improves sequence quality but sacrifices a portion of usable sequencing reads. An alternative approach is to insert nucleotides of variable length and composition ("phased inserts") at the beginning of each molecule when adding sequencing adaptors. This approach preserves read depth but reduces the length of each read. Here, we test the ability of phased inserts to replace PhiX in a low-diversity sample generated for a high-throughput sequencing based ribozyme activity screen. We designed a pool of 4096 RNA sequence variants of the self-cleaving twister ribozyme from Oryza sativa. For each unique sequence, we determined the fraction of ribozyme cleaved during in vitro transcription via deep sequencing on an Illumina MiSeq. We found that libraries with the phased inserts produced high-quality sequence data without the addition of PhiX. We found good agreement between previously published data on twister ribozyme variants and our data produced with phased inserts even when PhiX was omitted. We conclude that phased inserts can be implemented following in vitro selection experiments to reduce or eliminate the use of PhiX and maximize read depth.

Funder

Boise State University

Swedish Research Council

Wenner-Gren Foundation

National Science Foundation Directorate for Biological Sciences

National Science Foundation Office of Integrative Activities

National Aeronautics and Space Administration

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3