Pooled PPIseq: screening the SARS-CoV-2 and human interface with a scalable multiplexed protein-protein interaction assay platform

Author:

Miller DarachORCID,Dziulko Adam,Levy Sasha

Abstract

AbstractProtein-ProteinInteractions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve. Current high-throughput PPI assays have screened entire viral-host PPI networks. However, these studies are time consuming, often require specialized equipment, and are difficult to further scale. Here, we develop methods that make larger-scale viral-host PPI screening more accessible. This approach combines the mDHFR split-tag reporter with the iSeq2 interaction-barcoding system to permit massively-multiplexed PPI quantification by simple pooled engineering of barcoded constructs, integration of these constructs into budding yeast, and fitness measurements by pooled cell competitions and barcode-sequencing. We applied this method to screen for PPIs between SARS-CoV-2 proteins and human proteins, screening in triplicate >180,000 ORF-ORF combinations represented by >1,000,000 barcoded lineages. Our results complement previous screens by identifying 74 putative PPIs, including interactions between ORF7A with the taste receptors TAS2R41 and TAS2R7, and between NSP4 with the transmembrane KDELR2 and KDELR3. We show that this PPI screening method is highly scalable, enabling larger studies aimed at generating a broad understanding of how viral effector proteins converge on cellular targets to effect replication.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3