Hypoxia influences polysome distribution of human ribosomal protein S12 and alternative splicing of ribosomal protein mRNAs

Author:

Brumwell Andrea,Fell Leslie,Obress Lindsay,Uniacke JamesORCID

Abstract

Ribosomes were once considered static in their composition because of their essential role in protein synthesis and kingdom-wide conservation. The existence of tolerated mutations in select ribosomal proteins (RPs), such as in Diamond-Blackfan anemia, is evidence that not all ribosome components are essential. Heterogeneity in the protein composition of eukaryotic ribosomes is an emerging concept with evidence that different pools of ribosomes exist with transcript-specificity. Here, we show that the polysome association of ribosomal proteins is altered by low oxygen (hypoxia), a feature of the tumor microenvironment, in human cells. We quantified ribosomal protein abundance in actively translating polysomes of normoxic and hypoxic HEK293 cells by tandem mass tags mass spectrometry. Our data suggest that RPS12 (eS12) is enriched in hypoxic monosomes, which increases the heavy polysome association of structured transcripts APAF-1 and XIAP. Furthermore, hypoxia induced five alternative splicing events within a subset of RP mRNAs in cell lines. One of these events in RPS24 (eS24 protein) alters the coding sequence to produce two protein isoforms that can incorporate into ribosomes. This splicing event is greatly induced in spheroids and correlates with tumor hypoxia in human prostate cancer. Our data suggest that hypoxia may influence the composition of the human ribosome through changes in RP incorporation and the production of hypoxia-specific RP isoforms.

Funder

Natural Sciences and Engineering Council of Canada

Canadian Institutes of Health Research

Natural Sciences and Engineering Council of Canada Alexander Graham Bell Canada Graduate Scholarship

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3