Author:
Park Jiyeon,Nam Da Hae,Kim Dokyeong,Chung Yeun-Jun
Abstract
AbstractAlthough alternative splicing (AS) is a major mechanism that adds diversity to gene expression patterns, its precise role in generating variability in ribosomal proteins, known as ribosomal heterogeneity, remains unclear. The ribosomal protein S24 (RPS24) gene, encoding a ribosomal component, undergoes AS; however, in-depth studies have been challenging because of three microexons between exons 4 and 6. We conducted a detailed analysis of RPS24 AS isoforms using a direct approach to investigate the splicing junctions related to these microexons, focusing on four AS isoforms. Each of these isoforms showed tissue specificity and relative differences in expression among cancer types. Significant differences in the proportions of these RPS24 AS isoforms between cancerous and normal tissues across diverse cancer types were also observed. Our study highlighted a significant correlation between the expression levels of a specific RPS24 AS isoform and the epithelial–mesenchymal transition process in lung and breast cancers. Our research contributes to a better understanding of the intricate regulatory mechanisms governing AS of ribosomal protein genes and highlights the biological implications of RPS24 AS isoforms in tissue development and tumorigenesis.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC