Quantification of alternatively spliced FGFR2 RNAs using the RNA invasive cleavage assay

Author:

WAGNER ERIC J.,CURTIS MICHELLE L.,ROBSON NICOLE D.,BARANIAK ANDREW P.,EIS PEGGY S.,GARCIA-BLANCO MARIANO A.

Abstract

The regulated splicing of fibroblast growth factor receptor-2 (FGFR2) transcripts leads to tissue-specific expression of distinct receptor isoforms. These isoforms contain two different versions of the ligand binding Ig-like domain III, which are encoded by exon IIIb or exon IIIc. The mutually exclusive use of exon IIIb and exon IIIc can be recapitulated in tissue culture using DT3 and AT3 rat prostate carcinoma cells. We used this well-characterized system to evaluate the precision and accuracy of the RNA invasive cleavage assay to specifically measure FGFR2 alternative splicing outcomes. Experiments presented here demonstrated that the RNA invasive cleavage assay could specifically detect isoforms with discrimination levels that ranged from 1 in 5 × 103 to 1 in 105. Moreover the assay could detect close to 0.01 amole of FGFR2 RNAs. The assay detected the expected levels of transcripts containing either exon IIIb or IIIc, but, surprisingly, it detected high levels of IIIb-IIIc double inclusion transcripts. This finding, which has important implications for the role of exon silencing and of mRNA surveillance mechanisms, had been missed by RT-PCR. Additionally, we used the RNA invasive cleavage assay to demonstrate a novel function for the regulatory element IAS2 in repressing exon IIIc inclusion. We also show here that purification of RNA is not necessary for the invasive cleavage assay, because crude cell lysates could be used to accurately measure alternative transcripts. The data presented here indicate that the RNA invasive cleavage assay is an important addition to the repertoire of techniques available for the study of alternative splicing.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3