Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner

Author:

Nallagatla Subba Rao,Bevilacqua Philip C.

Abstract

The human interferon-induced protein kinase PKR is a key component of innate immunity, a process in which it senses pathogenic RNA. PKR consists of an N-terminal dsRNA-binding domain (dsRBD) and a C-terminal kinase domain. Upon binding long (>33 base pairs) stretches of pathogenic dsRNA, PKR undergoes autophosphorylation, which activates it to phosphorylate eIF2α, leading to inhibition of translation initiation. Many cellular and viral transcripts contain nucleoside modifications, and these could affect PKR activation. For example, a 5′-triphosphate confers the ability of relatively unstructured transcripts to activate PKR. Effects of internal RNA modifications on PKR activation have not been reported. Herein, PKR activation by ssRNA and dsRNA containing internal nucleobase, sugar, and phosphodiester modifications is analyzed. We find that for 5′-triphosphate-containing ssRNA, most base and sugar modifications abrogate activation, although 2′-fluoro-modified ssRNA does not, indicative of a critical role for hydrogen bonding at the ribose sugar. In the case of dsRNA, a more limited set of nucleoside modifications affect PKR activation. Watson–Crick base-pairing is required for activation, and some minor groove modifications abrogate activation while major groove modifications have little effect. Surprisingly, GU wobble pairs also largely abrogate dsRNA-mediated activation when present at modest levels. Modifications to dsRNA that abrogate activation have no significant effect on dsRBD binding, allowing such RNAs to act as inhibitors and suggesting a nonequivalence of binding ability and activation. Overall, the findings indicate that nucleoside modifications and wobble pairing may serve to discriminate self-RNA and pathogenic RNA in innate immunity.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3