Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs

Author:

MOLL ISABELLA,AFONYUSHKIN TARAS,VYTVYTSKA ORESTA,KABERDIN VLADIMIR R.,BLÄSI UDO

Abstract

The Escherichia coli RNA chaperone Hfq was discovered originally as an accessory factor of the phage Qβ replicase. More recent work suggested a role of Hfq in cellular physiology through its interaction with ompA mRNA and small RNAs (sRNAs), some of which are involved in translational regulation. Despite their stability under certain conditions, E. coli sRNAs contain putative RNase E recognition sites, that is, A/U-rich sequences and adjacent stem–loop structures. We show herein that an RNase E cleavage site coincides with the Hfq-binding site in the 5′-untranslated region of E. coli ompA mRNA as well as with that in the sRNA, DsrA. Likewise, Hfq protects RyhB RNA from in vitro cleavage by RNase E. These in vitro data are supported by the increased abundance of DsrA and RyhB sRNAs in an RNase E mutant strain as well as by their decreased stability in a hfq strain. It is commonly believed that the RNA chaperone Hfq facilitates or promotes the interaction between sRNAs and their mRNA targets. This study reveals another role for Hfq, that is, protection of sRNAs from endonucleolytic attack.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3