RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble

Author:

DING YE,CHAN CHI YU,LAWRENCE CHARLES E.

Abstract

Prediction of RNA secondary structure by free energy minimization has been the standard for over two decades. Here we describe a novel method that forsakes this paradigm for predictions based on Boltzmann-weighted structure ensemble. We introduce the notion of a centroid structure as a representative for a set of structures and describe a procedure for its identification. In comparison with the minimum free energy (MFE) structure using diverse types of structural RNAs, the centroid of the ensemble makes 30.0% fewer prediction errors as measured by the positive predictive value (PPV) with marginally improved sensitivity. The Boltzmann ensemble can be separated into a small number (3.2 on average) of clusters. Among the centroids of these clusters, the “best cluster centroid” as determined by comparison to the known structure simultaneously improves PPV by 46.5% and sensitivity by 21.7%. For 58% of the studied sequences for which the MFE structure is outside the cluster containing the best centroid, the improvements by the best centroid are 62.5% for PPV and 31.4% for sensitivity. These results suggest that the energy well containing the MFE structure under the current incomplete energy model is often different from the one for the unavailable complete model that presumably contains the unique native structure. Centroids are available on the Sfold server at http://sfold.wadsworth.org.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3