Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress

Author:

VAN EDEN MARC E.,BYRD MARSHALL P.,SHERRILL KYLE W.,LLOYD RICHARD E.

Abstract

Cellular inhibitor of apoptosis protein 1 (c-IAP1) can regulate apoptosis through its interaction with downstream TNF receptor effectors (TRAF1 and TRAF2), by binding to and inhibiting certain caspases, and by controlling the levels of specific proapoptotic stimuli (e.g., Smac/DIABLO) within the cell. Studies involving the expression of c-IAP1 mRNA and protein in cells and tissues have provided evidence suggesting c-IAP1 expression may be posttranscriptionally controlled. Because the 5′-UTR of c-IAP1 mRNA is unusually long, contains multiple upstream AUG codons, and has the potential to form thermodynamically stable secondary structures, we investigated the possibility it contained an internal ribosome entry site (IRES) that may regulate its expression. In the present study, the c-IAP1 5′-UTR exhibited IRES activity when dicistronic RNA constructs were translated in rabbit reticulocyte lysate (RRL) and in transiently transfected cells. IRES-mediated translation was similar to that exhibited by the hepatitis C virus IRES but varied significantly in RRL and in HeLa, HepG2, and 293T cells, indicating the c-IAP1 IRES was system and cell type specific. IRES-mediated translation was maintained in mono- and dicistronic constructs in which the UTR was inserted downstream from a stable hairpin that prevented cap-dependent ribosome scanning. In cells, the presence or absence of a methylated cap did not significantly affect the translation of polyadenylated, monocistronic RNAs containing the c-IAP1 5′-UTR. IRES-mediated translation was stimulated in transfected cells treated with low doses of pro-apoptotic stimuli (i.e., etoposide and sodium arsenite) that inhibited endogenous cellular translation.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3