Generation of Multiple Isoforms of Eukaryotic Translation Initiation Factor 4GI by Use of Alternate Translation Initiation Codons

Author:

Byrd Marshall P.1,Zamora Miguel1,Lloyd Richard E.1

Affiliation:

1. Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030

Abstract

ABSTRACT Eukaryotic translation initiation factor 4GI (eIF4GI) is an essential protein that is the target for translational regulation in many cellular processes and viral systems. It has been shown to function in both cap-dependent and cap-independent translation initiation by recruiting the 40S ribosomal subunit to the mRNA cap structure or internal ribosome entry site (IRES) element, respectively. Interestingly eIF4GI mRNA itself has been reported to contain an IRES element in its 5′ end that facilitates eIF4GI protein synthesis via a cap-independent mechanism. In HeLa cells, eIF4GI exists as several isoforms that differ in their migration in sodium dodecyl sulfate (SDS) gels; however, the nature of these isoforms was unclear. Here, we report a new cDNA clone for eIF4GI that extends the 5′ sequence 340 nucleotides beyond the previously published sequence. The new extended sequence of eIF4GI is located on chromosome 3, within two additional exons immediately upstream of the previously published eIF4GI sequence. When mRNA transcribed from this cDNA clone was translated in vitro, five eIF4GI polypeptides were generated that comigrated in SDS-polyacrylamide gels with the five isoforms of native eIF4GI. Furthermore, translation of eIF4GI-enhanced green fluorescent protein fusion constructs in vitro or in vivo generated five isoforms of fusion polypeptides, suggesting that multiple isoforms of eIF4GI are generated by alternative translation initiation in vitro and in vivo. Mutation of two of the five in-frame AUG residues in the eIF4GI cDNA sequence resulted in loss of corresponding polypeptides after translation in vitro, confirming alternate use of AUGs as the source of the multiple polypeptides. The 5′ untranslated region of eIF4GI mRNA also contains an out-of-frame open reading frame (ORF) that may down-regulate expression of eIF4GI. Further, data are presented to suggest that a proposed IRES embedded in the eIF4GI ORF is able to catalyze synthesis of multiple eIF4GI isoforms as well. Our data suggest that expression of the eIF4GI isoforms is partly controlled by a complex translation strategy involving both cap-dependent and cap-independent mechanisms.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3