Abstract
Ribosomal RNA (rRNA) maturation in archaea is a complex multistep process that requires well-defined endo- and exoribonuclease activities to generate fully mature linear rRNAs. However, technical challenges prevented detailed mapping of rRNA processing steps and a systematic analysis of rRNA maturation pathways across the tree of life. In this study, we used long-read (PCR)-cDNA and direct RNA nanopore-based sequencing to study rRNA maturation in three archaeal model organisms, namely the EuryarchaeaHaloferax volcaniiandPyrococcus furiosusand the CrenarchaeonSulfolobus acidocaldarius. Compared to standard short-read protocols, nanopore sequencing facilitates simultaneous readout of 5′- and 3′-positions, which is required for the classification of rRNA processing intermediates. More specifically, we (i) accurately detect and describe rRNA maturation stages by analysis of terminal read positions of cDNA reads and thereupon (ii) explore the stage-dependent installation of the KsgA-mediated dimethylations inH. volcaniiusing base-calling and signal characteristics of direct RNA reads. Due to the single-molecule sequencing capacity of nanopore sequencing, we could detect hitherto unknown intermediates with high confidence, revealing details about the maturation of archaea-specific circular rRNA intermediates. Taken together, our study delineates common principles and unique features of rRNA processing in euryarchaeal and crenarchaeal representatives, thereby significantly expanding our understanding of rRNA maturation pathways in archaea.
Funder
Deutsche Forschungsgemeinschaft
German Research Foundation
SFB/CRC
Centre National de la Recherche Scientifique
Ecole Polytechnique de Paris
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献