Exploring the epitranscriptome by native RNA sequencing

Author:

Begik OguzhanORCID,Mattick John S.ORCID,Novoa Eva MariaORCID

Abstract

Chemical RNA modifications, collectively referred to as the “epitranscriptome,” are essential players in fine-tuning gene expression. Our ability to analyze RNA modifications has improved rapidly in recent years, largely due to the advent of high-throughput sequencing methodologies, which typically consist of coupling modification-specific reagents, such as antibodies or enzymes, to next-generation sequencing. Recently, it also became possible to map RNA modifications directly by sequencing native RNAs using nanopore technologies, which has been applied for the detection of a number of RNA modifications, such as N6-methyladenosine (m6A), pseudouridine (Ψ), and inosine (I). However, the signal modulations caused by most RNA modifications are yet to be determined. A global effort is needed to determine the signatures of the full range of RNA modifications to avoid the technical biases that have so far limited our understanding of the epitranscriptome.

Funder

MERCK 2020 Research Drug Discovery Grant

Spanish Ministry of Economy, Industry and Competitiveness

the European Research Consortium

the AECC Scientific Foundation

UNSW Sydney

MEIC

Centro de Excelencia Severo Ochoa

CERCA Programme/Generalitat de Catalunya

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3