Optimal Gerrymandering: Sometimes Pack, But Never Crack

Author:

Friedman John N1,Holden Richard T2

Affiliation:

1. University of California at Berkeley, Evans Hall, 5th floor, Berkeley, CA 94720.

2. Massachusetts Institute of Technology, Sloan School of Management, E52-410, 50 Memorial Drive, Cambridge, MA 02142.

Abstract

Standard intuitions for optimal gerrymandering involve concentrating one's extreme opponents in “unwinnable” districts (“packing”) and spreading one's supporters evenly over “winnable” districts (“cracking”). These intuitions come from models with either no uncertainty about voter preferences or only two voter types. In contrast, we characterize the solution to a problem in which a gerrymanderer observes a noisy signal of voter preferences from a continuous distribution and creates N districts of equal size to maximize the expected number of districts she wins. Under mild regularity conditions, we show that cracking is never optimal—one's most ardent supporters should be grouped together. Moreover, for sufficiently precise signals, the optimal solution involves creating a district that matches extreme “Republicans” with extreme “Democrats,” and then continuing to match toward the center of the signal distribution. (JEL D72)

Publisher

American Economic Association

Subject

Economics and Econometrics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monotone Function Intervals: Theory and Applications;American Economic Review;2024-08-01

2. Padding and pruning: gerrymandering under turnout heterogeneity;Social Choice and Welfare;2024-07-09

3. Are Firms Gerrymandered?;American Political Science Review;2024-06-04

4. Asymmetries in Potential for Partisan Gerrymandering;Legislative Studies Quarterly;2024-02-07

5. Legislative redistricting and the partisan distribution of transportation expenditure;Economics of Governance;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3