Author:
Rinaldi Sergio,Muratori Simona,Kuznetsov Yuri
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience
Reference46 articles.
1. Afrajmovich, V. S., V. I. Arnold, Yu. S. Il'ashenko and P. Shilnikov. 1991. Bifurcation theory InDynamical Systems, Vol. 5, V. I. Arnold (Ed.),Encyclopaedia of Mathematical Sciences, New York: Springer Verlag.
2. Allen, J. C. 1989. Are natural enemy populations chaotic? InEstimation and Analysis of Insect Populations, Lecture Notes in Statistics, Vol. 55, L. McDonald, B. Manly, J. Lockwood and J. Logan (Eds), pp. 190–205, New York: Springer Verlag.
3. Arnold, V. I., 1982.Geometrical Methods in the Theory of Ordinary Differential Equations. New York: Springer Verlag.
4. Aron, J. L. and I. B. Schwartz. 1984. Seasonality and period-doubling bifurcations in an epidemic model.J. theor. Biol. 110, 665–679.
5. Bajaj, A. K. 1986. Resonant parametric perturbations of the Hopf bifurcation.J. Math. Anal. Appl.,115, 214–224.
Cited by
218 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献