Decolorization and biodegradation of melanoidin contained in beet molasses by an anamorphic strain of Bjerkandera adusta CCBAS930 and its mutants

Author:

Korniłłowicz-Kowalska Teresa,Rybczyńska-Tkaczyk KamilaORCID

Abstract

AbstractWe used a ligninolytic strain of the white-rot fungus B. adusta CCBAS 930 and its mutants with modified ligninolytic activity to assess their potential to remove of molasses. The analyzed strains have been shown to be able to decolorize 1% or 2% molasses solutions containing brown-colored toxic melanoidins. It was found that the decolorization process was determined by the transition to the stage of production of sporulating aerial mycelium (liquid and agar cultures) coupled with an increase in peroxidase activity, which was accompanied by a decrease in the level of melanoidin, free radicals, and phenolic compounds. Four different peroxidase activities were detected in post-culture liquids, i.e. horseradish-like (HRP-like), manganese-dependent (MnP), lignin (LiP), and versatile (VP) peroxidase activities. The HRP-like peroxidase was characterized by the highest activity. The efficiency of removal of melanoidins from a 1% molasses solution by the parental strain and the mutants was dependent on the culture method. The highest efficiency was noted in immobilized cultures (threefold higher than in the mycelium-free cultures), which was accompanied by stimulation of HRP-like peroxidase activity. Mutant 930-5 was found to be the most effective in the decolorization and decomposition of melanoidin. The HRP-like activity in the immobilized cultures of B. adusta 930-5 was 640-fold higher than in the mycelium-free cultures of the fungus. Moreover, decolorization and biodegradation of melanoidin by B. adusta CCBAS 930 and 930-5 was coupled with detoxification. Graphic abstract

Funder

University of Life Sciences in Lublin

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Physiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3