Microbial activity of lactic acid bacteria and hydrogen producers mediated by pH and total solids during the consolidated bioprocessing of agave bagasse

Author:

Dudek Karol,Guzmán Cecilia Lizeth Álvarez,Valdez-Vazquez Idania

Abstract

AbstractLactic acid bacteria (LAB) coexist with Clostridium spp. in hydrogen production processes from complex substrates; however, the role of LAB is still unclear. This study analyzed the fermentation products in a wide range of initial pH (pHi, 5.5–6.9) and total solids (TS%, 8–22%) to determine the activity of these two microbial groups over time (from 24 to 120 h). Agave bagasse served as the feedstock for hydrogen production via consolidated bioprocess (CBP), while the inoculum source was the indigenous mature microbiota. In the early stage of the CBP, hydrogen production from lactic acid occurred only at pHi ≥ 6.0 (ρ = 0.0004) with no effect of TS%; lactic acid accumulated below this pHi value. In this stage, lactic acid production positively correlated with a first cluster of LAB represented by Paucilactobacillus (r = 0.64) and Bacillus (r = 0.81). After 72 h, hydrogen production positively correlated with a second group of LAB led by Enterococcus (r = 0.71) together with the hydrogen producer Clostridium sensu stricto 1 (r = 0.8) and the acetogen Syntrophococcus (r = 0.52) with the influence of TS% (ρ < 0.0001). A further experiment showed that buffering the pH to 6.5 increased and lengthened the lactic acid production, doubling the hydrogen production from 20 to 41 mL H2/gTSadded. This study confirmed the prevalence of distinct groups of LAB over time, whose microbial activity promoted different routes of hydrogen production.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3