Abstract
Abstract
Large N gauged multi-matrix quantum mechanical models usually have a first order Hagedorn transition, related to deconfinement. In this transition the change of the energy and entropy is of order N
2 at the critical temperature. This paper studies the microcanonical ensemble of the model at intermediate energies 1 ≪ E ≪ N
2 in the coexistence region for the first order phase transition. Evidence is provided for a partial deconfinement phase where submatrix degrees of freedom for a U(M) subgroup of U(N), with M ≪ N have an excitation energy of order M
2 and are effectively phase separated from the other degrees of freedom. These results also provide a simple example of the Susskind-Horowitz-Polchinski correspondence principle where a transition from a long string to a black hole is smooth. Implications for the dual configurations of small black holes in AdS are discussed.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference47 articles.
1. D.J. Gross and E. Witten, Possible Third Order Phase Transition in the Large N Lattice Gauge Theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].
2. R. Hagedorn, Hadronic matter near the boiling point, Nuovo Cim. A 56 (1968) 1027 [INSPIRE].
3. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn/Deconfinement Phase Transition in Weakly Coupled Large N Gauge Theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].
4. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].
5. S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献