Abstract
Abstract
In their recent inspiring paper, Mironov and Morozov claim a surprisingly simple expansion formula for the Kontsevich-Witten tau-function in terms of the Schur Q-functions. Here we provide a similar description for the Brézin-Gross-Witten tau-function. Moreover, we identify both tau-functions of the KdV hierarchy, which describe intersection numbers on the moduli spaces of punctured Riemann surfaces, with the hypergeometric solutions of the BKP hierarchy.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference41 articles.
1. A. Alexandrov, Cut-and-join description of generalized Brezin-Gross-Witten model, Adv. Theor. Math. Phys. 22 (2018) 1347 [arXiv:1608.01627] [INSPIRE].
2. A. Alexandrov, Cut-and-join operator representation for Kontsewich-Witten τ -function, Mod. Phys. Lett. A 26 (2011) 2193 [arXiv:1009.4887] [INSPIRE].
3. A. Alexandrov, A. Mironov and A. Morozov, BGWM as second constituent of complex matrix model, JHEP 12 (2009) 053 [arXiv:0906.3305] [INSPIRE].
4. A. Alexandrov, KdV solves BKP, Proc. Nat. Acad. Sci. 118 (2021) e2101917118 [arXiv:2012.10448] [INSPIRE].
5. A. Alexandrov, Generalized Brézin-Gross-Witten tau-function as a hypergeometric solution of the BKP hierarchy, arXiv:2103.17117 [INSPIRE].
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献