Abstract
AbstractObject detection is a critical and complex problem in computer vision, and deep neural networks have significantly enhanced their performance in the last decade. There are two primary types of object detectors: two stage and one stage. Two-stage detectors use a complex architecture to select regions for detection, while one-stage detectors can detect all potential regions in a single shot. When evaluating the effectiveness of an object detector, both detection accuracy and inference speed are essential considerations. Two-stage detectors usually outperform one-stage detectors in terms of detection accuracy. However, YOLO and its predecessor architectures have substantially improved detection accuracy. In some scenarios, the speed at which YOLO detectors produce inferences is more critical than detection accuracy. This study explores the performance metrics, regression formulations, and single-stage object detectors for YOLO detectors. Additionally, it briefly discusses various YOLO variations, including their design, performance, and use cases.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Computer Science
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献