A Quantum-Like Tensor Compression Sentence Representation Based on Constraint Functions for Semantics Analysis

Author:

Yu Yan,Qiu Dong,Yan Ruiteng

Abstract

AbstractTo emphasize the semantic impact of local semantic and grammatical information among adjacent words in the input text, we establish a constraint functions-based quantum-like tensor compression sentence representation model by integrating the concept of extending the pure state-based density matrix to the mixed-state projection operator in quantum mechanics. The provided model highlights the semantic significance of mixed word associations in the input text, simultaneously reducing the reliance on information derived solely from dictionary statistics. We combine the correlation coefficient with the attention mechanism to establish the correlation coefficient between words. The quantum-like sentence representation based on pure state density matrix is extended to the projection operator of mixed states. Combining the acquisition of maximum in convex optimization, a constraint functions-based quantum-like text representation pruning model is established to reduce redundant information caused by dimensional expansion of tensor operations. The experimental results on SICK-2014, STS-benchmark, and STS-companion show that the provided model is more effective than the mainstream models in mining semantic information, especially more sensitive to the negative semantics of sentences.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China, Key Project of Cyberspace Security Governance

Scientific Research Fund of Chengdu University of Information Technology

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3