A Deep Reinforcement Learning Real-Time Recommendation Model Based on Long and Short-Term Preference

Author:

Hou Yan-e,Gu Wenbo,Dong WeiChuan,Dang LanxueORCID

Abstract

AbstractWith the development of Internet technology, the problem of information overload has increasingly attracted attention. Nowadays, the recommendation system with excellent performance in information retrieval and filtering would be widely used in the business field. However, most existing recommendation systems are considered a static process, during which recommendations for internet users are often based on pre-trained models. A major disadvantage of these static models is that they are incapable of simulating the interaction process between users and their systems. Moreover, most of these models only consider users’ real-time interests while ignoring their long-term preferences. This paper addresses the abovementioned issues and proposes a new recommendation model, DRR-Max, based on deep reinforcement learning (DRL). In the proposed framework, this paper adopted a state generation module specially designed to obtain users’ long-term and short-term preferences from user profiles and user history score item information. Next, Actor-Critical algorithm is used to simulate the real-time recommendation process.Finally, this paper uses offline and online methods to train the model. In the online mode, the network parameters were dynamically updated to simulate the interaction between the system and users in a real recommendation environment. Experimental results on the two publicly available data sets were used to demonstrate the effectiveness of our proposed model.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interactive preference analysis: A reinforcement learning framework;European Journal of Operational Research;2024-12

2. Knowledge graph-based recommendation system enhanced by neural collaborative filtering and knowledge graph embedding;Ain Shams Engineering Journal;2024-01

3. Interpreting Decision Process in Offline Reinforcement Learning for Interactive Recommendation Systems;Communications in Computer and Information Science;2023-11-26

4. AP-TRL: Augmenting Real-Time Personalization with Transformer Reinforcement Learning;2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS);2023-11-02

5. A Survey on Recommendation System for Future Researchers Using Classifiers;2023 International Conference on Inventive Computation Technologies (ICICT);2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3