Abstract
AbstractWind driven optimization (WDO) is a meta-heuristic algorithm based on swarm intelligence. The original selection method makes it easy to converge prematurely and trap in local optima. Maintaining population diversity can solve this problem well. Therefore, we introduce a new fitness-distance balance-based selection strategy to replace the original selection method, and add chaotic local search with selecting chaotic map based on memory to further improve the search performance of the algorithm. A chaotic wind driven optimization with fitness-distance balance strategy is proposed, called CFDBWDO. In the experimental section, we find the optimal parameter settings for the proposed algorithm. To verify the effect of the algorithm, we conduct comparative experiments on the CEC 2017 benchmark functions. The experimental results denote that the proposed algorithm has superior performance. Compared with WDO, CFDBWDO can gradually converge in function optimization. We further verify the practicality of the proposed algorithm with six real-world optimization problems, and the obtained results are all better than other algorithms.
Funder
Japan Science and Technology Agency (JST) Support for Pioneering Research Initiated by the Next Generation
Japan Society for the Promotion of Science (JSPS) KAKENHI
JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Computer Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献