Abstract
AbstractThe classic Fuzzy C-means (FCM) algorithm has limited clustering performance and is prone to misclassification of border points. This study offers a bi-directional FCM clustering ensemble approach that takes local information into account (LI_BIFCM) to overcome these challenges and increase clustering quality. First, various membership matrices are created after running FCM multiple times, based on the randomization of the initial cluster centers, and a vertical ensemble is performed using the maximum membership principle. Second, after each execution of FCM, multiple local membership matrices of the sample points are created using multiple K-nearest neighbors, and a horizontal ensemble is performed. Multiple horizontal ensembles can be created using multiple FCM clustering. Finally, the final clustering results are obtained by combining the vertical and horizontal clustering ensembles. Twelve data sets were chosen for testing from both synthetic and real data sources. The LI_BIFCM clustering performance outperformed four traditional clustering algorithms and three clustering ensemble algorithms in the experiments. Furthermore, the final clustering results has a weak correlation with the bi-directional cluster ensemble parameters, indicating that the suggested technique is robust.
Funder
the national key r&d program of china
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献