Predicting Propositional Satisfiability Based on Graph Attention Networks

Author:

Chang Wenjing,Zhang Hengkai,Luo Junwei

Abstract

AbstractBoolean satisfiability problems (SAT) have very rich generic and domain-specific structures. How to capture these structural features in the embedding space and feed them to deep learning models is an important factor influencing the use of neural networks to solve SAT problems. Graph neural networks have achieved good results, especially for message-passing models. These capture the displacement-invariant architecture well, whether building end-to-end models or improving heuristic algorithms for traditional solvers. We present the first framework for predicting the satisfiability of domain-specific SAT problems using graph attention networks, GAT-SAT. Our model can learn satisfiability features in a weakly supervised setting, i.e., in the absence of problem-specific feature engineering. We test the model to predict the satisfiability of randomly generated SAT instances SR(N) and random 3-SAT problems. Experiments demonstrate that our model improves the prediction accuracy of random 3-SAT problems by 1–4% and significantly outperforms other graph neural network approaches on random SR(N). Compared to NeuroSAT, our model can almost always achieve the same or even higher accuracy with half the amount of iterations. At the end of the paper, we also try to explain the role played by the graph attention mechanism in the model.

Funder

National Natural Science Foundation of China

Young Elite Teachers in Henan Province

Doctor Foundation of Henan Polytechnic University

Innovative and Scientific Research Team of Henan Polytechnic University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GNN Based Extraction of Minimal Unsatisfiable Subsets;Inductive Logic Programming;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3