Compression of Deep-Learning Models Through Global Weight Pruning Using Alternating Direction Method of Multipliers

Author:

Lee Kichun,Hwangbo Sunghun,Yang Dongwook,Lee GeonseokORCID

Abstract

AbstractDeep learning has shown excellent performance in numerous machine-learning tasks, but one practical obstacle in deep learning is that the amount of computation and required memory is huge. Model compression, especially in deep learning, is very useful because it saves memory and reduces storage size while maintaining model performance. Model compression in a layered network structure aims to reduce the number of edges by pruning weights that are deemed unnecessary during the calculation. However, existing weight pruning methods perform a layer-by-layer reduction, which requires a predefined removal-ratio constraint for each layer. Layer-by-layer removal ratios must be structurally specified depending on the task, causing a sharp increase in the training time due to a large number of tuning parameters. Thus, such a layer-by-layer strategy is hardly feasible for deep layered models. Our proposed method aims to perform weight pruning in a deep layered network, while producing similar performance, by setting a global removal ratio for the entire model without prior knowledge of the structural characteristics. Our experiments with the proposed method show reliable and high-quality performance, obviating layer-by-layer removal ratios. Furthermore, experiments with increasing layers yield a pattern in the pruned weights that could provide an insight into the layers’ structural importance. The experiment with the LeNet-5 model using MNIST data results in a higher compression ratio of 98.8% for the proposed method, outperforming existing pruning algorithms. In the Resnet-56 experiment, the performance change according to removal ratios of 10–90% is investigated, and a higher removal ratio is achieved compared to other tested models. We also demonstrate the effectiveness of the proposed method with YOLOv4, a real-life object-detection model requiring substantial computation.

Funder

Ministry of Trade, Industry and Energy

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3