Lexical Normalization Using Generative Transformer Model (LN-GTM)

Author:

Ashmawy MohamedORCID,Fakhr Mohamed Waleed,Maghraby Fahima A.

Abstract

AbstractLexical Normalization (LN) aims to normalize a nonstandard text to a standard text. This problem is of extreme importance in natural language processing (NLP) when applying existing trained models to user-generated text on social media. Users of social media tend to use non-standard language. They heavily use abbreviations, phonetic substitutions, and colloquial language. Nevertheless, most existing NLP-based systems are often designed with the standard language in mind. However, they suffer from significant performance drops due to the many out-of-vocabulary words found in social media text. In this paper, we present a new (LN) technique by utilizing a transformer-based sequence-to-sequence (Seq2Seq) to build a multilingual characters-to-words machine translation model. Unlike the majority of current methods, the proposed model is capable of recognizing and generating previously unseen words. Also, it greatly reduces the difficulties involved in tokenizing and preprocessing the nonstandard text input and the standard text output. The proposed model outperforms the winning entry to the Multilingual Lexical Normalization (MultiLexNorm) shared task at W-NUT 2021 on both intrinsic and extrinsic evaluations.

Funder

Arab Academy for Science, Technology & Maritime Transport

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3