An Object Association Matching Method Based on V2I System

Author:

Jin Wujie,Yan Lixin,Jiang JunfengORCID

Abstract

AbstractVehicle-to-infrastructure (V2I) is one of the effective ways to solve the problem of intelligent connected vehicle perception, and the core is to fuse the information sensed by vehicle sensors with that sensed by infrastructure sensors. However, accurately matching the objects detected by the vehicle with multiple objects detected by the infrastructure remains a challenge. This paper presents an object association matching method to fuse the object information from vehicle sensors and roadside sensors, enabling the matching and fusion of multiple target information. The proposed object association matching algorithm consists of three steps. First, the deployment method for vehicle sensors and roadside sensors is designed. Then, the laser point cloud data from the roadside sensors are processed using the DBSCAN algorithm to extract the object information on the road. Finally, an improved single-pass algorithm for object association matching is proposed to achieve the matched target by setting a change threshold for selection. To validate the effectiveness and feasibility of the proposed method, real-vehicle experiments are conducted. Furthermore, the improved single-pass algorithm is compared with the classical Hungarian algorithm, Kuhn–Munkres (KM) algorithm, and nearest neighbor (NN) algorithm. The experimental results demonstrate that the improved single-pass algorithm achieves a target trajectory matching accuracy of 0.937, which is 6.60%, 1.85%, and 2.07% higher than the above-mentioned algorithms, respectively. In addition, this paper investigates the curvature of the target vehicle trajectory data after fusing vehicle sensing information and roadside sensing information. The curvature mean, curvature variance, and curvature standard deviation are analyzed. The experimental results illustrate that the fused target information is more accurate and effective. The method proposed in this study contributes to the advancement of the theoretical system of V2I cooperative perception and provides theoretical support for the development of intelligent connected vehicles.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3