Author:
Liu Boting,Guan Weili,Yang Changjin,Fang Zhijie,Lu Zhiheng
Abstract
AbstractGraph convolutional network (GCN) is an effective tool for feature clustering. However, in the text classification task, the traditional TextGCN (GCN for Text Classification) ignores the context word order of the text. In addition, TextGCN constructs the text graph only according to the context relationship, so it is difficult for the word nodes to learn an effective semantic representation. Based on this, this paper proposes a text classification method that combines Transformer and GCN. To improve the semantic accuracy of word node features, we add a part of speech (POS) to the word-document graph and build edges between words based on POS. In the layer-to-layer of GCN, the Transformer is used to extract the contextual and sequential information of the text. We conducted the experiment on five representative datasets. The results show that our method can effectively improve the accuracy of text classification and is better than the comparison method.
Funder
National Natural Science Foundation of China
Basic Ability Promotion Project for Yong Teachers in Guangxi
Specific Research Project of Guangxi for Research Bases and Talents
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献