The Classification of EEG Signal Using Different Machine Learning Techniques for BCI Application
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-13-7780-8_17
Reference37 articles.
1. van de Laar, B., et al.: Experiencing BCI control in a popular computer game. IEEE Trans. Comput. Intell. AI Games 5(2), 176–184 (2013)
2. Jiang, D., Yin, J.: Research of auxiliary game platform based on BCI technology. In: Asia-Pacific Conference on Information Processing, APCIP 2009, pp. 424–428 (2009)
3. Vo, K., Nguyen, D.N., Kha, H.H., Dutkiewicz, E.: Real-time analysis on ensemble SVM scores to reduce P300-Speller intensification time. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, pp. 4383–4386 (2017)
4. Aydemir, O., Kayikcioglu, T.: Decision tree structure based classification of EEG signals recorded during two dimensional cursor movement imagery. J. Neurosci. Methods 229, 68–75 (2014). ISSN 0165-0270
5. Zhang, B., Jiang, H., Dong, L.: Classification of EEG signal by WT-CNN model in emotion recognition system. In: 2017 IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC), Oxford, pp. 109–114 (2017)
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-domain Feature Extraction Methods for Classification of Human Emotions from Electroencephalography (EEG) Signals;Communications in Computer and Information Science;2024
2. Überblick über die Klassifizierung von EEG-Signalen mit maschinellem Lernen und Deep-Learning-Techniken;Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML;2024
3. Review of EEG Signals Classification Using Machine Learning and Deep-Learning Techniques;Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning;2023
4. A Review on EEG Data Classification Methods for Brain–Computer Interface;International Conference on Innovative Computing and Communications;2022-09-27
5. An intelligent neuromarketing system for predicting consumers’ future choice from electroencephalography signals;Physiology & Behavior;2022-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3