Publisher
Springer Nature Singapore
Reference42 articles.
1. Alahmadi, D., Wali, A., Alzahrani, S.: TAAM: Topic-aware abstractive Arabic text summarisation using deep recurrent neural networks. J. King Saud Univ. 34(6), 2651–2665 (2022)
2. Alami, N., Mallahi, M.E., Amakdouf, H., Qjidaa, H.: Hybrid method for text summarization based on statistical and semantic treatment. Multim. Tools Appl. 80(13), 19567–19600 (2021). https://doi.org/10.1007/s11042-021-10613-9
3. Alami, N., En-nahnahi, N., Ouatik, S.A., Meknassi, M.: Using unsupervised deep learning for automatic summarization of Arabic documents. Arab. J. Sci. Eng. 43(12), 7803–7815 (2018). https://doi.org/10.1007/s13369-018-3198-y
4. Alami, N., Meknassi, M., En-nahnahi, N.: Enhancing unsupervised neural networks based text summarization with word embedding and ensemble learning. Exp. Syst. Appl. 123, 195–211 (2019). https://doi.org/10.1016/j.eswa.2019.01.037
5. Almazaydeh, L.: Automatic Arabic text summarisation system (AATSS) based on morphological analysis. Int. J. Intell. Syst. Technol. Appl. 17(3), 272–280 (2018). https://doi.org/10.1504/IJISTA.2018.094007
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献