Hybrid method for text summarization based on statistical and semantic treatment
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-10613-9.pdf
Reference60 articles.
1. Afsharizadeh M, Ebrahimpour-Komleh H, Bagheri A (2018) Query-oriented text summarization using sentence extraction technique. 2018 4th International Conference on Web Research (ICWR). https://doi.org/10.1109/icwr.2018.8387248
2. Alami N, Meknassi M, Alaoui Ouatik S, Ennahnahi N (2015) Arabic text summarization based on graph theory. In: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA), Marrakech, pp 1–8. https://doi.org/10.1109/aiccsa.2015.7507254
3. Alami N, En-nahnahi N, Ouatik SA, Meknassi M (2018) Using unsupervised deep learning for automatic summarization of Arabic documents. Arab J Sci Eng 43(12):7803–7815
4. Alami N, Meknassi M, En-nahnahi N (2019) Enhancing unsupervised neural networks based text summarization with word embedding and ensemble learning. Expert Syst Appl 123:195–211
5. Alguliyev RM, Aliguliyev RM, Isazade NR (2015) An unsupervised approach to generating generic summaries of documents. Appl Soft Comput 34:236–250
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey of text summarization: Techniques, evaluation and challenges;Natural Language Processing Journal;2024-06
2. Graph-based extractive text summarization based on single document;Multimedia Tools and Applications;2023-07-25
3. Abstractive Arabic Text Summarization Based on MT5 and AraBart Transformers;2023 Intelligent Methods, Systems, and Applications (IMSA);2023-07-15
4. An Efficient Deep Learning Approach for Extractive Arabic Text Summarization Based on Multiple Encoders and a Single Decoder;2023 Intelligent Methods, Systems, and Applications (IMSA);2023-07-15
5. Graph-based extractive text summarization method for Hausa text;PLOS ONE;2023-05-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3